
AeWP4 -FFWT Pazy wing

16th May 2024

FFWT Pazy wing – Main features

- Based on Pazy wing
- 5 wings with different plates
- Sensors:
 - Strain gauges (both sides): WRBM
 - Accelerometers
 - Potentiometer: fold angle
 - Actuator*: release signal

FFWT Pazy wing - Experiment

- Initial sizing conducted using linear Nastran model
- Experimental setup:
 - W-tunnel at TU Delft
 - Objective:
 - Active release during the gust
 - Effect of bending stiffness of main wing
 - Effect of tailoring of main wing
- Other findings:
 - Underprediction of flutter speed
 - Subcritical instability

FFWT Pazy wing – Available data

Paper: https://doi.org/10.2514/1.C037108

Dataset: https://doi.org/10.4121/c.6070238.

Static: WRBM and fold angle polars

Gust response

Parameter	1-cosine gust
Hinge release	Free, Locked, Pre-released, 0%, 50%, 100% of peak load
Angle of attack [º]	0, 5
Gust amplitude [º]	2.5
Gust Frequency [Hz]	0.5, 5, 8, 1st Bending, 1st Flapping

- Other (on request):
 - GVT
 - Nastran models

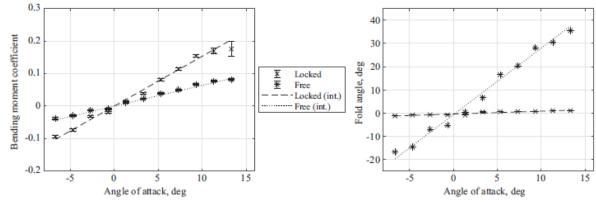
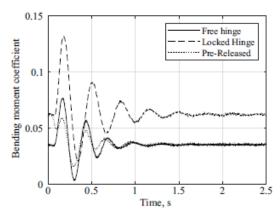
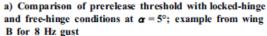
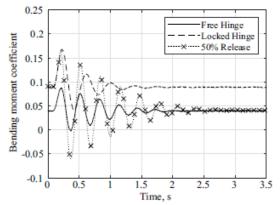





Fig. 17 Plate B interpolated C_B and β polars.

b) Comparison of 50% threshold with locked-hinge and free-hinge conditions at $\alpha = 5^{\circ}$; example from wing A for 5 Hz gust

Fig. 22 Bending moment coefficient time response examples.